
PFtree: Optimizing Persistent Adaptive
Radix Tree for PM Systems on eADR

Platform

Rui Zhang, Yao Wu, Shangyi Sun, Lulu Chen, Yibo Huang, Ming Yan,
and Jie Wu(B)

School of Computer Science, Fudan University, Shanghai, China
{zhangrui21,shangyisun21}@m.fudan.edu.cn,

{yao wu20,llchen18,huangbb16,myan,jwu}@fudan.edu.cn

Abstract. Persistent memory (PM) provides byte-addressability, low
latency as well as data persistence. Recently, a new feature called eADR
is available on the 3rd generation Intel Xeon Scalable Processors with
the 2nd generation Intel Optane PM. eADR ensures that data stored
within the CPU caches will be flushed to PM upon the power failure.

In the eADR platform, previous PM-based work suffered more
read/write amplification and random access problems, and memory allo-
cations on PM are still expensive. The persistence ways on the eADR
platform are still unclear. Therefore, we propose PFtree (PM Line
Accesses Friendly Adaptive Radix Tree), a persistent index optimized
for the eADR platform. PFtree reduces PM line access with two opti-
mizations: stores key-value pair in leaf array directly to reduce pointer
chasing and stores necessary metadata with key-value pair closely and
auxiliary metadata in DRAM. PFtree reduces memory allocations in crit-
ical paths by allocating bulk memory when creating a leaf array. Then, we
design an adaptive persistence way based on data block size for PFtree
to fully use PM bandwidth. Experimental results show that our pro-
posed PFtree outperforms the radix tree by up to 1.2× and B+-Trees
by 1.1−7× throughput, respectively, with multi-threads.
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1 Introduction

Emerging byte-addressable persistent memory (PM), such as the Intel Optane
DC Persistent Memory Module (DCPMM) [8], is now commercially available.
PM is attractive because it offers DRAM-comparable performance and disk-like
endurance. In the first generation, PM-equipped platforms support the asyn-
chronous DRAM refresh (ADR) feature [9]. The write content in the CPU cache
is still unstable. Therefore, we need to use explicit cache line flush instructions
and memory barriers to ensure the persistence of PM writes.

With the arrival of 3rd generation Intel Xeon Scalable processors and 2nd
generation Intel Optane DCPMM, extended ADR (eADR) becomes available
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[10]. Compared to ADR, eADR further ensures that data in the CPU cache is
flushed back to the PM after a crash. It ensures the persistence of globally visible
data in the CPU cache and eliminates the need to issue expensive synchronous
flushes. The advent of eADR not only omits the flush instruction but also allows
us to revisit the design of PM-based data structures.

Building efficient index structures in PM promises high performance and data
durability for in-memory databases [4,15,21]. Most existing persistent indexes
[1,3–5,12] are designed only for ADR-based PM systems. They work on achiev-
ing crash consistency, and the optimization for performance generally lies in
reducing the number of flushes, because data flushing is expensive in ADR-
based PM systems. However, in the second generation PM, these optimizations
are no longer evident as the flush instruction is no longer needed, therefore, these
optimizations are not evident when the previous work is applied directly to the
second generation PM.

ART(Adaptive Radix Tree) was widely used in database systems because it
supported range query and variable-sized keys. Although there have been some
works of ART on NVM [11,13,18], there have been some problems. First, the
previous work had more PM read/write amplification problems. The previous
PM-based data structure usually stored the metadata in the header, separately
from the data. Therefore, reading and writing the metadata in the header and the
data will cause more PM write amplification problems. Second, the throughput of
PM is still slower than DRAM, especially in random access. Separating metadata
from data leads to more random accesses [16,17] because the metadata needs
to be accessed before the data, and leading to more PM line accesses. Third,
the persistence ways on the eADR platform are still unclear. There is no need
for persistence instructions on eADR, so there are various ways to achieve data
persistence. It is not clear what scenarios these persistence ways are applicable
to.

This paper presents PFtree, a PM Line Accesses Friendly Adaptive Radix
Tree, to deliver high scalability and low PM overhead. PFtree proposed a leaf
array to compress leaf nodes in ART(Adaptive Radix Tree) to solve the problems
above. To our knowledge, PFtree is the first PM-based ART optimized for eADR-
enabled PM systems.

To reduce PM line accesses, PFtree stores the payload and metadata of each
key-value data closely in the leaf array so that when reading or writing a key-
value data, it can be done in the same XPline and reduce the PM read/write
amplification. In addition, PFtree does not store a pointer to key-value data
like others [16,18]. Instead, key-values are stored directly in the data area of
the leaf array. For variable key and value, PFtree uses metadata to help store
and recovery from the leaf array. The directly stored key-values not only reduce
one pointer chasing but also reduce PM line accesses. Meanwhile, PFtree stores
auxiliary metadata for accelerated lookup and insertion into DRAM, further
reducing PM read and write accesses. These auxiliary metadata are violate and
can be reconstructed from other data.
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To reduce the overhead of PM memory allocation, PFtree uses bulk memory
allocation. The leaf array in PFtree allocates a large chunk of memory at creation
time. It then stores the key-value data directly into the memory of the leaf array
at insertion time, avoiding the overhead of allocating new memory every time
the key value is inserted.

To choose the appropriate persistence way, the performance of the new gen-
eration CPU and the new generation PM has been tested in detail. In the new
scenario, there are three persistence methods for data persistence to PM. We
analyze the latency and bandwidth of the three persistence methods in detail
under different data sizes and different threads. Finally, a suitable persistence
method was selected for PFtree in different scenarios.

The main contributions are as follows.

– We propose PFtree, the first persistent range index based on eADR platform,
to take full advantage of eADR. PFtree not only focuses on data crash consis-
tency but also focuses on reducing PM line accesses to reduce read and write
amplification.

– We provide an in-depth analysis of the persistent ways in eADR platforms.
Then we propose an adaptive persistent way to fully utilize the PM band-
width.

– We perform experiments to compare PFtree with state-of-the-art tree-based
indexes, including ROART [18], P-ART [13], FAST&FAIR [7], and BzTree
[1]. PFtree outperforms the existing solutions by 1.1−7× throughput under
YCSB workloads.

2 Background

2.1 PM and eADR

Compared to DRAM, The most significant difference of PM is the non-volatile
property. Data written to PM will persist and still exist after power failure.
Figure 1 shows the architecture of PM systems and the internal architecture of
Optane PM. We assume that the system consists of one or more NUMA-enabled
multicore cpus, each with local registers, storage buffers, and caches and that the
last level of cache (LLC) is shared between all cores of the CPU. Each CPU has
its own memory (DRAM and PM), which is connected to other CPUs through
mesh interconnect. PM and Write Pending Queues (WPQ) connect to mesh
connect through iMC (integrated memory controller).

Extended ADR (eADR), which is supported in the 3rd generation IntelTM

XeonTM Scalable Processors, solves data consistency problems by making sure
that CPU caches are also included in the so called “power fail protected Domain”
[10]. In an eADR environment, the CPU cache is also a part of the persistent
domain, so there is no need to flush data from the cache to the ADR domain.
The data in the CPU cache will be automatically persisted to the PM after a
power failure or software crashes. However, the data in the CPU register is still
volatile. Because of the nature of eADR, the operations and designs that ensure
crash consistency in applications do not need to be performed.
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Fig. 1. Architecture of PM. Fig. 2. Read and write amplification in
ROART.

2.2 ART and Its Persistent Variants

Adaptive Radix Tree (ART) is a space-efficient radix tree that can dynamically
change the node size according to node utilization. To reduce the tree height,
ART sets the number of child Pointers in the node to 28 and uses a one-byte
partial key for each node. At the same time, ART reduces memory consumption
by using one of four different node types. Figure 3 illustrates the node structures
of ART. Node4 and Node16 store the keys in order together with the corre-
sponding pointers. Sequential search is enough for Node4 because of its small
size. SIMD instructions can be used to accelerate the search in Node16. Node48
has a child index with 256 slots to quickly locate the corresponding pointer.
Node256 is the normal node in a radix tree whose radix is 256. Starting with
Node4, ART adaptively converts nodes to larger or smaller types when the num-
ber of entries exceeds or falls behind the capacity of the node type. This requires
additional metadata and more memory manipulation than a traditional radix
tree, but still shows better performance than other cache conscious in-memory
index constructs.

P-ART is a persistent version of the concurrent ART that uses instructions
in RECIPE [13] for transformation. For Crash Consistency, P-ART re-used a
helper mechanism to detect and fix crash inconsistencies during restarts. How-
ever, p-ART does not guarantee dural linearizability-that is, it is possible to
read volatile data even if the corresponding operation has returned. ROART
[18] is an improved version of P-ART for supporting efficient range queries, lower
memory allocation overhead and correctness. However, because ROART inherits
the rebalancing algorithm and index structure from ART [14], it still incurs a
high allocation overhead during SMOs (structural modification operations), as
it needs to allocate more than two leaf arrays for each split operation.
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Fig. 3. Node structures in ART

2.3 Motivation

Reduce PM Reading and Writing. In the ADR platform, since the CPU
cache is a volatile domain, persistence instructions are needed to ensure data per-
sistence. Much previous work [1,2,7,17,19,20,22] has been devoted to achieving
crash consistency and recoverability of data while neglecting optimization of PM
line accesses. By analyzing the PM-based indexes, as shown in Fig. 2, ROART
has significant read and write amplification to PM under different workloads.
One reason is that the metadata in these structures are stored in the head and
the key-value data are stored in the tail, and known research work shows that
there is 256B buffer inside the PM, so this operation across multiple buffers
causes significant read and write amplification.

Reduce PM Memory Allocations on Critical Paths. To improve the effi-
ciency of range queries in ART, ROART [18] uses a leaf array to store pointers
to leaf nodes in a compressed manner, in order to eliminate the need to traverse
different levels of the trees and pointer chasing. ROART stores each complete
key and value in the leaf node, therefore, a memory allocation on PM is made
when a key-value pair is inserted. However, the memory allocation in PM incurs
high overhead, increasing the query’s latency and decreasing the throughput.

Leverage the Features of eADR. The new eADR has multiple methods
for persisting data. We are motivated to reveal the effects of these methods on
different data sizes, to make full advantage of the eADR features in the real
environment.
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3 Design

PFtree aims to further optimize query and insertion of ART on PM. Specifically,

– (1) PFtree stores key-value pairs directly in leaf arrays instead of pointers to
key-value pairs. It can not only reduce pointer chasing but also reduce PM
line accesses.

– (2) PFtree stores metadata and key-value data close together, PM line
accesses can be reduced.

– (3) By taking advantage of the latest eADR hardware platform, PFtree’s
persistence strategy cleverly supports an adaptive persistence way that auto-
matically selects the best persistence strategy according to the block size of
the persistent data.

3.1 Block-Based Leaf Array

Motivated by ROART [18], PFtree uses leaf array to delay the leaf split and
reduces pointer chasing to improve the range queries in ART. Unlike ROART’s
leaf array, PFtree stores key-value pairs directly in the leaf array instead of point-
ers to key-value pairs to further reduce pointer chasing and PM line accesses.
In addition to leaf nodes, PFtree does not change the types of other nodes in
ROART, that is, the internal nodes will still use Node4, Node16, Node48 and
Node256, as mentioned before.

Fig. 4. The leaf array structure of PFtree

Overview of Leaf Array. Figure 4 shows the basic structure of the leaf array
in PFtree. The header of each leaf array holds the metadata necessary to identify
the characteristics of the leaf array, which can be used for quick recovery and
concurrency control. The following is a large data area for storing key-value pairs.
In addition to the raw data of key-value pair, there are two bytes of metadata
before them, which are used to reconstruct and update key-value from the data
area. In the two-byte metadata, the first bit represents the validity of key-value
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pair, 0 means deleted and 1 means normal. The next nine bits represent the
length of the key. The last six bits record the value length of this key-value pair.
After the metadata, we store the raw key-value pair. Although we can traverse
and lookup in leaf arrays using only two bytes of metadata, this is slow and
inefficient. It is tedious and inefficient to parse the metadata and calculate the
position of the next key-value pair each time, so we store the KeyPosarray and
KeyLenarray in the header to speed up the traversal and update. Except for
volatile metadata, all other data of the leaf array is stored in PM, and the data
of the internal nodes are also stored in PM.

The Header of Leaf Array. The header stores the necessary metadata and
some other data to speed up queries and updates. Type indicates that the type of
the node is Node4, Node16, Node48, Node256, or leaf array. Depth indicates the
depth of the node in the entire PFtree, which facilitates traversal of the entire
ART. Generation records the generation of each node, for quick recovery after
startup. Lock is used to mark whether the leaf array is locked, which is used
for concurrent access control. Index records the index of the inserted key-value
pairs in the subsequent 4 arrays. Prefix records the common prefixes in the
leaf array. Count records how many key-value pairs have been inserted into the
current leaf array. KeyPosarray and KeyLenarray record the offset of each
key-value pair in the data area and the length of the key, respectively. Similarly,
Fingerprintarray records the fingerprint of each key-value pair. None of these
three arrays needs to be persistent because we can rebuild and update key-value
pairs by using the metadata of the first two bytes of each key-value pair in
the data area. In addition, we also use slotarray to record the size relationship
between leaf nodes, which can further improve the efficiency of range queries.
Among these metadata of header, Type, Depth, and Prefix are initialized when
the leaf array is created, and Generation is persisted and restored after each
restart. We do not need to modify them after creation. The remaining violate
data can be recovered by scanning the data area. The detailed recovery process
can be found in the section Data Structure Recovery.

The Advantages of Leaf Array. PFtree can reduce pointer chasing and
PM line accesses through storing key-value pairs directly. Key-value pairs are
stored directly in PM, we do not need to get the pointer and then get the value
according to the address as before. Directly stored key-value pairs can reduce
a PM-based pointer chasing and also reduce random access on PM because the
data and pointer to it are stored in different places.

Adjacent Storage of Metadata and Key-Value Pair Can Reduce PM Line
Accesses. The previous data structure tended to keep the metadata in the header
and the payload of key-value pair in the back part of leaf nodes. This can make
the metadata storage more compact, but in each lookup or modification, we need
to update the metadata in the header and then turn to the tail to manipulate
the key-value pairs. When there are many key-value pairs, more PM lines will
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be accessed during persistence. In the leaf array of PFtree, as shown in Fig. 4,
we store the necessary metadata in the first two bytes of each key-value pair,
followed immediately by the key-value pair. The advantage of such adjacent
storage is that we do not need to read or write data across multiple PM lines,
and the number of reads and modifications in the same PM line can reduce the
PM read/write amplification. Also in ADR environment, storing metadata and
key-value pair close together can reduce flush times.

Volatile Metadata Stored in DRAM can Reduce PM Line Accesses. In the leaf
array of PFtree, metadata such as KeyPosarray, KeyLenarray, can be recov-
ered by the 2-byte metadata in front of each key-value pair, so no persistence
is required. Considering that the read/write latency of PM is still higher than
that of DRAM, we store this recoverable metadata in DRAM, thus reducing the
read/write access to read PM.

Bulk Memory in Leaf Array Can Reduce the PM Memory Allocation on Critical
Path. The leaf array has already allocated a large chunk of memory when it is
created, so there is no need to allocate memory again when inserting key-value
pair into the leaf array, and only need to copy key-value pair to the free area,
thus reducing the PM memory allocation on the critical path.

3.2 PM-Aware Flush Mode

Fig. 5. Random write bandwidths varying with access size for the three persistence
ways

With the application of new processors and the new generation of PM, there are
three ways to persist data: ! synchronous IO: Use the persistence instructions
the same as before. We can use clwb and fence to flush data from the L1
cache to PM or use NTStore and fence to store data directly to PM without
going through the CPU cache. " eADR approach: Use the features provided
by eADR to persist data without using any instructions. In the eADR-enabled
system, the CPU cache is located in the persistent domain. As a result, we can
persist the data in the L1 cache to PM without instructions like clwb and fence.
# asynchronous IO: Use the flush to force the data from the cache to PM
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without calling the fence for synchronization. Traditional PM can not support
this way, but we can avoid using the fence while keeping the program correct in
the eADR system.

To explore which persistence way can make the most of the PM bandwidth
and achieve the lowest persistence latency, we first test the basic performance
of PM, explored in different threads, different access sizes, form of persistence
time latency and the change of bandwidth. Since most programs are based on
random access to PM (such as ART insertion and update operations), we will
focus on the latency and bandwidth of random read and write to PM under
the three different persistence ways in the following experiments. The hardware
configuration of the experiment will be introduced in Sect. 4.

Fig. 6. Random write bandwidths varying with thread for the three persistence ways

Different Access Sizes. We first explore the latency and bandwidth of dif-
ferent persistence ways under different access sizes. We explore the bandwidth
of random write with single-thread and multi-thread (8 threads in our experi-
ments) respectively. Figure 5a shows the latency and bandwidth changes of the
three persistence ways under different access sizes in the case of a single thread.
When the access size is smaller than 128B, the bandwidth of asynchronous IO
and eADR persistence is almost the same. In the range of 128B to 256B, the
persistent bandwidth in eADR mode is slightly higher than that in asynchronous
IO mode. After 256B, the persistent data bandwidth in asynchronous IO mode
is higher than that in eADR mode. Especially, when the access size is large,
the persistent bandwidth in asynchronous IO mode is significantly higher than
that in eADR mode. As for the traditional synchronous IO mode, it has been
proven that the fence instruction incurs a significant persistence overhead, so
the persistence bandwidth is always lower than the asynchronous IO mode.

In the multi-thread case, the results show similar conclusions to the single-
thread case. For example, in the case of 8 threads as shown in Fig. 5b, when the
access size is small, the bandwidth of persistent data in asynchronous IO and
eADR modes are similar. When the access size exceeds 64B, asynchronous IO
bandwidth is higher than eADR bandwidth. As access size continues to grow,
the bandwidth gap between the two becomes more and more apparent.
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Therefore, it can be seen that when the access size is small, eADR can achieve
or even exceed the bandwidth of synchronous and asynchronous IO with less
overhead, and as the access size becomes larger, asynchronous IO can get more
bandwidth. It still keeps the same pattern in multi-thread. We speculate that the
reason for this phenomenon is as follows: when using eADR way for persistence,
without the help of any persistence instructions, the persistent data in PM needs
to be passively evicted from the cache, from L1 cache to L2 cache to L3 cache,
and finally to PM. However, the flush instruction can flush data directly from
the L1 cache to PM, which is expected to reduce the IO path of data and reduce
the latency of data persistence. For this reason, we propose an asynchronous IO
persistence approach that uses flush instructions to omit this part of the data
persistence path to reduce data persistence latency.

Different Threads. As for the influence of different persistence modes on PM
bandwidth under multi-thread, we also conducted some experiments to analyze.
For example, when the access size is 8 bytes, asynchronous IO throughput is
similar to eADR throughput when the number of threads is less than 12. Only
when it exceeds 14, asynchronous IO performance is slightly better than eADR.

Figure 6b shows the variation of PM bandwidth with different persistence
ways when the access size is 256B. When the number of threads is 2, the PM
bandwidth in asynchronous IO persistence is higher than that in eADR. As the
number of threads increases, The asynchronous IO mode is significantly higher
than the bandwidth using eADRmode. This is similar to the previous conclusion:
when the access is large, using asynchronous IO persistence can obtain higher
PM bandwidth.

Based on Fig. 6, we find that eADR can still obtain high persistence band-
width without additional persistence instructions when the number of threads
and access size both are small. When access size exceeds 256B, asynchronous IO
can obtain higher persistence bandwidth. As the number of threads increases,
it is more efficient to use asynchronous IO persistence when the access size is
large. Based on these findings, we design an adaptive data persistence approach
in the eADR environment: the data persistence way is determined by the size of
the data.

3.3 Adaptive Flush in Insert and Update

Since eADR platform is gradually on the market, we can take full advantage
of eADR features to reduce the overhead of implementing persistent instruc-
tions. Based on our previous observations, not all persistence cases that use the
eADR approach yield the best performance. Therefore, we design an adaptive
persistence approach to take advantage of the low latency of eADR-style while
allowing larger chunks of data to achieve higher bandwidth. As shown in Algo-
rithm 1, when persisting data, we first judge the size of the data. If it is a large
data block (larger than 256B), the persistence instruction CLWB is invoked to
forcibly refresh the data to PM so as to make better use of the bandwidth of
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Algorithm 1. flush data(void *addr, size t len)
1: if support eADR() then
2: if len > 256 then
3: for each cacheline in data do
4: clwb(cacheline)
5: end for
6: else
7: eadr auto flush(data)
8: end if
9: else
10: for each cacheline in data do
11: clwb(cacheline)
12: end for
13: fence();
14: end if

PM. If it is a small data block (smaller than 256 bytes), eADR mode is used to
refresh the data automatically. That is, no persistence command is invoked and
the data is passively swapped out of the cache to achieve persistence.

4 Evaluation

Our evaluations consist of four parts to reflect the performance improvements
of each proposed design. We evaluate and compare PFtree with some available
and usable state-of-the-art representative indexes. For ART, we choose two other
state-of-the-art PM ART, ROART [18] and P-ART [13]. We also evaluated the
other state-of-the-art B+tree indexes and tire indexes such as BzTree [1] (lock-
free B+tree), FAST&FAIR [7](logless crash consistency).

4.1 Experimental Setup

We run experiments on a server with an Intel(R) Xeon(R) Silver 4314 CPU
clocked at 2.40 GHz, 512 GB of Optane DCPMM per socket (4 × 128 GB
DIMMs on four channels per socket) in AppDirect mode, and 256 GB of DRAM
(8 × 32 GB DIMMs). It is important to note that we are using a second gen-
eration DCPMM. The CPU has 16 cores (32 hyperthreads) and 48 MB of L3
cache. The server runs Ubuntu 20.04.3 LTS with kernel 5.13.0. For the workload,
we use micro-benchmarks and YCSB [6] workload. Each test firstly warms up
using 30 million key-value pairs [7,13,17]. Each test lasts 60 s. The total size
exceeds the size of the L3-cache and can truly reflect the performance of PM.
The micro-benchmarks contain the operations of lookup, insert, update, remove
and scan. They are performed using 4 threads. For a fair comparison, we modi-
fied the persistence policy in other persistent indexes for the adaptation of eADR
features.
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4.2 Microbenchmark and Scalability Evaluation

Fig. 7. Microbench (4 threads) Fig. 8. Performance improvement of each
optimization.

The results of micro-benchmark are in Fig. 7. The lookup performance of PFtree
is 2.708Mop/s, faster than ROART (2.118Mop/s) and P-ART (1.832Mop/s).
This is because PFtree stores key-value pairs directly in the leaf array, whereas
ROART stores pointers to leaf nodes in the leaf node array, so we need more
pointer chasing in ROART. The reason why PFtree and ROART are faster than
P-ART is that N16 in P-ART cannot use SIMD instructions for accelerated
lookup. BzTree is fast because it used slotted-page node layout which can have
good cache locality. In addition, FastFair does not use binary lookup in internal
nodes, so query performance is low. PFtree also has better insertion performance
(1.8Mops/s) than the other trees. There are many reasons for this rise. (1)
PFtree stores the inserted key-value pairs in the form of a leaf node array and
allocates memory of multiple leaf nodes at a time, which reduces the overhead
of memory allocation. (2) PFtree stores the necessary metadata and key-value
together, reducing PM line accesses. And the auxiliary metadata is stored in
DRAM, further reducing PM line accesses. (3) Compared with PART, the array
of leaf nodes can store more key-value pairs, reducing the number of segments.

Fig. 9. The performance varying thread under YCSB workload.
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For update operations, PFtree shows better for similar reasons. Key-value
pairs directly stored reduces a pointer chasing and speeds up the search. More
metadata stored in DRAM can help updates and they can update themselves
quickly. For the remove operations, ROART needs to free the memory of the
node after each deletion, while PFtree free all the memory after all key-value
pairs in the leaf array are deleted.

Figure 9 shows the performance and scalability of PFtree and the state-of-
the-art ART and B+tree indexes. For the write-intensive workloads A (50%
lookup and 50% insert) and D (insert only), PFtree performs up to 2X better
than all the other indexes; this can be attributed to PFtree storing key-value
pair directly, reducing pointer jumps. And storing metadata and key-value pair
closely reduces the access to PM line every time when we access the data. In
addition, PFtree apply a bulk request memory policy avoids memory allocation
overhead on critical paths. Other B+Tree indexes experience high latency on
the critical path due to SMOs. For the read-intensive workloads B (95% lookup
and 5% insert) and C (read only), PFtree outperforms all the other indexes
by 1.2–7x using 32 threads. The primary reason is metadata stored in efficient
DRAM speeds up the traversal and search of leaf nodes, and key-value pair
stored directly reduces pointer chasing.

4.3 Factor Analysis of Each Design

Figure 8 presents the factor analysis on PFtree. We start with ROART and add
proposed design features. The experiment setup is the same as in microbench-
mark, using 4 threads for 60 s of test.

+ Store Key-Value Directly. We saw that this optimization worked in all
of our tests. It improves lookup efficiency by 15% and delete efficiency by 11%,
as well as in processes such as inserts and updates. In the lookup and scan,
efficiency is improved by reducing the number of pointer chasing. In the insert
and update, key-value pairs directly stored in the leaf array can not only reduce
a pointer chasing, but also avoid memory allocation overhead when constructing
a leaf node each time, and reduce flush times. In the remove, the original method
requires the removed leaf node be reclaimed every time it is deleted, whereas in
PFtree only metadata needs to be changed without memory reclamation.

+ Metadata Stores Closely with Key-Value Pair. Unlike previous data
structures that store metadata in the header, PFtree stores the metadata asso-
ciated with each key-value pair directly with the actual data. In this way, when
accessing key-value pair each time, there is no need to read both the PM line
where the metadata is located and the PM line where the key-value pair data
is located as before, and fewer PM line accesses can reduce the PM read/write
amplification.

+ Allocate Violate Metadata from DRAM. This is a slight improvement in
all operations because each operation involves reading or writing volatile meta-
data, and DRAM is more efficient than PM. The improvement is even more
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pronounced in insert and update operations because more metadata is written
and DRAM has a higher write bandwidth than PM.

4.4 Recovery

Fig. 10. Data structure recovery. Fig. 11. Insert throughput varies with key
length.

In Fig. 10, we test recovery time with different key numbers in PFtree; With
128M keys, data structure recovery takes about 21 s to reconstruct the whole
metadata, which is a little slower than ROART (19 s). The main reason is that
PFtree stores more volatile metadata in the leaf array to assist in search and
update. During recovery, it needs to reconstruct the metadata in Fig. 4 according
to the 2-byte metadata in front of each key-value pair, so it takes more time to
recover.

4.5 Auto flush Benchmark

Auto flush benchmark focus on the persistent ways with PFtree. We have three
versions of PFtree: raw-PFtree, eADR-PFtree, and auto-PFtree. Raw-PFtree
persists data using the traditional flush and fence instructions. It executes the
flush and fence instructions after each data writen to the PM. Based on raw-
PFtree, eADR-PFtree removes flush and fence instructions directly, and takes
advantage of the nature of cache persistence to ensure data consistency. Auto-
PFtree is based on the discovery of the new generation of PM hardware in
Sect. 3.2 and uses the adaptive persistence algorithm proposed in Sect. 3.3.

Since the length of the key and value will affect the persistent data size,
and the adaptive persistence algorithm is related to the persistent data size, we
explored the effects of three persistence modes under different key lengths, and
the results are shown in Fig. 11. We tested insert throughput with 8 threads at
key lengths of 50, 150, 250 respectively. When the key length is small, eADR
mode can improve a little, and auto-PFtree mode improves less than eADR
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mode. With the increase of key length, auto-PFtree insert throughput is gradu-
ally better than eADR-PFtree. This is consistent with the previous observation in
Sect. 3.2. Because the persistence method used by auto-PFtree varies according
to the amount of data being persisted. As the key length increases, the amount
of data required for each persistent operation increases. According to the results
in Sect. 3.2, when the amount of data exceeds 256B, eADR persistence cannot
fully use the PM bandwidth. Flush instruction assisted persistence can obtain
more bandwidth. Therefore, auto-PFtree can have large throughput when the
key length is large.

Unfortunately, auto flush does not provide much performance improvement
because tree traversal and lookup consume a lot of time during ART insertion,
and persistence only takes a small fraction of that time, so auto flush has a
limited effect.

5 Conclusion

This paper presents PFtree, a PM Line Accesses Friendly Adaptive Radix Tree
optimized for eADR platform. PFtree is proposed with several optimizations.
(1) PFtree store key-value pair directly in leaf arrays, reducing pointer chasing,
and metadata is stored closely with key-value pair, reducing PM line accesses.
(2) PFtree propose an adaptive refresh algorithm to take full advantage of the
new PM hardware, based on the detailed analysis of the new generation of PM
hardware.

Acknowledgements. This research is supported in part by the National Key
Research and Development Program of China (2021YFC3300600).

References

1. Arulraj, J., Levandoski, J., Minhas, U.F., Larson, P.A.: BzTree: a high-performance
latch-free range index for non-volatile memory. Proc. VLDB Endow. 11(5), 553–
565 (2018)

2. Chen, S., Jin, Q.: Persistent B+-trees in non-volatile main memory. Proc. VLDB
Endow. 8(7), 786–797 (2015)

3. Chen, Y., Lu, Y., Fang, K., Wang, Q., Shu, J.: uTree: a persistent B+-tree with
low tail latency. Proc. VLDB Endow. 13(12), 2634–2648 (2020)

4. Chen, Y., Lu, Y., Yang, F., Wang, Q., Wang, Y., Shu, J.: FlatStore: an efficient log-
structured key-value storage engine for persistent memory. In: Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 1077–1091 (2020)

5. Chen, Z., Hua, Y., Ding, B., Zuo, P.: Lock-free concurrent level hashing for per-
sistent memory. In: 2020 USENIX Annual Technical Conference (USENIX ATC
2020), pp. 799–812 (2020)

6. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, pp. 143–154 (2010)



PFtree: Optimizing Persistent Adaptive Radix Tree 61

7. Hwang, D., Kim, W.H., Won, Y., Nam, B.: Endurable transient inconsistency in
byte-addressable persistent B+-tree. In: 16th {USENIX} Conference on File and
Storage Technologies ({FAST} 2018), pp. 187–200 (2018)

8. Intel: Intel optane dc persistent memory module. https://www.intel.com/content/
www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

9. Intel: Deprecating the pcommit instruction (2016). https://software.intel.com/
content/www/us/en/develop/blogs/deprecat-epcommit-instruction.html

10. Intel: eADR: new opportunities for persistent memory applications (2021).
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-
new-opportunities-for-persistent-memory-applications.html

11. Kim, W.H., Krishnan, R.M., Fu, X., Kashyap, S., Min, C.: PacTree: a high perfor-
mance persistent range index using PAC guidelines. In: Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles, pp. 424–439 (2021)

12. Krishnan, R.M., et al.: {TIPS}: making volatile index structures persistent
with {DRAM-NVMM} tiering. In: 2021 USENIX Annual Technical Conference
(USENIX ATC 2021), pp. 773–787 (2021)

13. Lee, S.K., Mohan, J., Kashyap, S., Kim, T., Chidambaram, V.: RECIPE: convert-
ing concurrent dram indexes to persistent-memory indexes. In: Proceedings of the
27th ACM Symposium on Operating Systems Principles, pp. 462–477 (2019)

14. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: artful indexing for
main-memory databases. In: 2013 IEEE 29th International Conference on Data
Engineering (ICDE), pp. 38–49. IEEE (2013)

15. Lepers, B., Balmau, O., Gupta, K., Zwaenepoel, W.: KVell: the design and imple-
mentation of a fast persistent key-value store. In: Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pp. 447–461 (2019)

16. Liu, J., Chen, S., Wang, L.: LB+ trees: optimizing persistent index performance
on 3DXPoint memory. Proc. VLDB Endow. 13(7), 1078–1090 (2020)

17. Liu, M., Xing, J., Chen, K., Wu, Y.: Building scalable NVM-based B+ tree with
HTM. In: Proceedings of the 48th International Conference on Parallel Processing,
pp. 1–10 (2019)

18. Ma, S., et al.: {ROART}: range-query optimized persistent {ART}. In: 19th
{USENIX} Conference on File and Storage Technologies ({FAST} 21), pp. 1–16
(2021)

19. Oukid, I., Lasperas, J., Nica, A., Willhalm, T., Lehner, W.: FPTree: a hybrid SCM-
dram persistent and concurrent B-tree for storage class memory. In: Proceedings
of the 2016 International Conference on Management of Data, pp. 371–386 (2016)

20. Venkataraman, S., Tolia, N., Ranganathan, P., Campbell, R.H.: Consistent and
durable data structures for {Non-Volatile}{Byte-Addressable} memory. In: 9th
USENIX Conference on File and Storage Technologies (FAST 2011) (2011)

21. Xia, F., Jiang, D., Xiong, J., Sun, N.: {HiKV}: a hybrid index {Key-Value} store for
{DRAM-NVM} memory systems. In: 2017 USENIX Annual Technical Conference
(USENIX ATC 2017), pp. 349–362 (2017)

22. Yang, J., Wei, Q., Chen, C., Wang, C., Yong, K.L., He, B.: {NV-Tree}: reducing
consistency cost for {NVM-based} single level systems. In: 13th USENIX Confer-
ence on File and Storage Technologies (FAST 2015), pp. 167–181 (2015)

https://www.intel.com/content/%20www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/%20www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://software.intel.com/content/www/us/en/develop/blogs/deprecat-epcommit-instruction.html
https://software.intel.com/content/www/us/en/develop/blogs/deprecat-epcommit-instruction.html
https://www.intel.com/content/%20www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/%20www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html

